Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Res Sq ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38645126

ABSTRACT

Malaria is a major public health problem, but many of the factors underlying the pathogenesis of this disease are not well understood. Here, we demonstrate in Malian children that susceptibility to febrile malaria following infection with Plasmodium falciparum is associated with the composition of the gut microbiome prior to the malaria season. Gnotobiotic mice colonized with the fecal samples of malaria-susceptible children had a significantly higher parasite burden following Plasmodium infection compared to gnotobiotic mice colonized with the fecal samples of malaria-resistant children. The fecal microbiome of the susceptible children was enriched for bacteria associated with inflammation, mucin degradation, gut permeability and inflammatory bowel disorders (e.g., Ruminococcus gauvreauii, Ruminococcus torques, Dorea formicigenerans, Dorea longicatena, Lachnoclostridium phocaeense and Lachnoclostridium sp. YL32). However, the susceptible children also had a greater abundance of bacteria known to produce anti-inflammatory short-chain fatty acids and those associated with favorable prognosis and remission following dysbiotic intestinal events (e.g., Anaerobutyricum hallii, Blautia producta and Sellimonas intestinalis). Metabolomics analysis of the human fecal samples corroborated the existence of inflammatory and recovery-associated features within the gut microbiome of the susceptible children. There was an enrichment of nitric oxide-derived DNA adducts (deoxyinosine and deoxyuridine) and long-chain fatty acids, the absorption of which has been shown to be inhibited by inflamed intestinal epithelial cells, and a decrease in the abundance of mucus phospholipids. Nevertheless, there were also increased levels of pseudouridine and hypoxanthine, which have been shown to be regulated in response to cellular stress and to promote recovery following injury or hypoxia. Overall, these results indicate that the gut microbiome may contribute malaria pathogenesis and suggest that therapies targeting intestinal inflammation could decrease malaria susceptibility.

2.
N Engl J Med ; 390(17): 1549-1559, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38669354

ABSTRACT

BACKGROUND: Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled Plasmodium falciparum infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from P. falciparum infection in a region where this organism is endemic is unclear. METHODS: We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season. In part A of the trial, safety was assessed at three dose levels in adults, followed by assessment at two dose levels in children. In part B of the trial, children were randomly assigned, in a 1:1:1 ratio, to receive 150 mg of L9LS, 300 mg of L9LS, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection, as detected on blood smear performed at least every 2 weeks for 24 weeks. A secondary efficacy end point was the first episode of clinical malaria, as assessed in a time-to-event analysis. RESULTS: No safety concerns were identified in the dose-escalation part of the trial (part A). In part B, 225 children underwent randomization, with 75 children assigned to each group. No safety concerns were identified in part B. P. falciparum infection occurred in 36 participants (48%) in the 150-mg group, in 30 (40%) in the 300-mg group, and in 61 (81%) in the placebo group. The efficacy of L9LS against P. falciparum infection, as compared with placebo, was 66% (adjusted confidence interval [95% CI], 45 to 79) with the 150-mg dose and 70% (adjusted 95% CI, 50 to 82) with the 300-mg dose (P<0.001 for both comparisons). Efficacy against clinical malaria was 67% (adjusted 95% CI, 39 to 82) with the 150-mg dose and 77% (adjusted 95% CI, 55 to 89) with the 300-mg dose (P<0.001 for both comparisons). CONCLUSIONS: Subcutaneous administration of L9LS to children was protective against P. falciparum infection and clinical malaria over a period of 6 months. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT05304611.).


Subject(s)
Antibodies, Monoclonal, Humanized , Malaria, Falciparum , Adult , Child , Female , Humans , Male , Dose-Response Relationship, Drug , Double-Blind Method , Endemic Diseases/prevention & control , Injections, Subcutaneous , Kaplan-Meier Estimate , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mali/epidemiology , Plasmodium falciparum , Treatment Outcome , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Directly Observed Therapy , Artemether, Lumefantrine Drug Combination/administration & dosage , Artemether, Lumefantrine Drug Combination/therapeutic use , Young Adult , Middle Aged
3.
Microbiol Spectr ; 11(6): e0155423, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37819130

ABSTRACT

IMPORTANCE: There is increasing evidence that microbes residing within the intestines (gut microbiota) play important roles in the well-being of humans. Yet, there are considerable challenges in determining the specific role of gut microbiota in human diseases owing to the complexity of diverse internal and environmental factors that can contribute to diseases. Mice devoid of all microorganisms (germ-free mice) can be colonized with human stool samples to examine the specific contribution of the gut microbiota to a disease. These approaches have been primarily focused on stool samples obtained from individuals in Western countries. Thus, there is limited understanding as to whether the same methods used to colonize germ-free mice with stool from Western individuals would apply to the colonization of germ-free mice with stool from non-Western individuals. Here, we report the results from colonizing germ-free mice with stool samples of Malian children.


Subject(s)
Gastrointestinal Microbiome , Intestines , Child , Humans , Animals , Mice , Disease Models, Animal , Germ-Free Life , Feces
4.
N Engl J Med ; 387(20): 1833-1842, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36317783

ABSTRACT

BACKGROUND: CIS43LS is a monoclonal antibody that was shown to protect against controlled Plasmodium falciparum infection in a phase 1 clinical trial. Whether a monoclonal antibody can prevent P. falciparum infection in a region in which the infection is endemic is unknown. METHODS: We conducted a phase 2 trial to assess the safety and efficacy of a single intravenous infusion of CIS43LS against P. falciparum infection in healthy adults in Mali over a 6-month malaria season. In Part A, safety was assessed at three escalating dose levels. In Part B, participants were randomly assigned (in a 1:1:1 ratio) to receive 10 mg of CIS43LS per kilogram of body weight, 40 mg of CIS43LS per kilogram, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection detected on blood-smear examination, which was performed at least every 2 weeks for 24 weeks. At enrollment, all the participants received artemether-lumefantrine to clear possible P. falciparum infection. RESULTS: In Part B, 330 adults underwent randomization; 110 were assigned to each trial group. The risk of moderate headache was 3.3 times as high with 40 mg of CIS43LS per kilogram as with placebo. P. falciparum infections were detected on blood-smear examination in 39 participants (35.5%) who received 10 mg of CIS43LS per kilogram, 20 (18.2%) who received 40 mg of CIS43LS per kilogram, and 86 (78.2%) who received placebo. At 6 months, the efficacy of 40 mg of CIS43LS per kilogram as compared with placebo was 88.2% (adjusted 95% confidence interval [CI], 79.3 to 93.3; P<0.001), and the efficacy of 10 mg of CIS43LS per kilogram as compared with placebo was 75.0% (adjusted 95% CI, 61.0 to 84.0; P<0.001). CONCLUSIONS: CIS43LS was protective against P. falciparum infection over a 6-month malaria season in Mali without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04329104.).


Subject(s)
Antibodies, Monoclonal, Humanized , Antimalarials , Malaria, Falciparum , Adult , Humans , Antimalarials/adverse effects , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Mali , Plasmodium falciparum , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Headache/chemically induced
6.
Nat Commun ; 12(1): 4711, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330920

ABSTRACT

Following Plasmodium falciparum infection, individuals can remain asymptomatic, present with mild fever in uncomplicated malaria cases, or show one or more severe malaria symptoms. Several studies have investigated associations between parasite transcription and clinical severity, but no broad conclusions have yet been drawn. Here, we apply a series of bioinformatic approaches based on P. falciparum's tightly regulated transcriptional pattern during its ~48-hour intraerythrocytic developmental cycle (IDC) to publicly available transcriptomes of parasites obtained from malaria cases of differing clinical severity across multiple studies. Our analysis shows that within each IDC, the circulation time of infected erythrocytes without sequestering to endothelial cells decreases with increasing parasitaemia or disease severity. Accordingly, we find that the size of circulating infected erythrocytes is inversely related to parasite density and disease severity. We propose that enhanced adhesiveness of infected erythrocytes leads to a rapid increase in parasite burden, promoting higher parasitaemia and increased disease severity.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial , Malaria, Falciparum/blood , Parasitemia/blood , Plasmodium falciparum/genetics , Blood Circulation Time , Erythrocytes/parasitology , Gene Ontology , Genes, Bacterial/genetics , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/physiopathology , Parasitemia/parasitology , Parasitemia/physiopathology , Plasmodium falciparum/physiology
7.
Sci Transl Med ; 13(599)2021 06 23.
Article in English | MEDLINE | ID: mdl-34162751

ABSTRACT

Immunoglobulin (Ig)A antibodies play a critical role in protection against mucosal pathogens. However, the role of serum IgA in immunity to nonmucosal pathogens, such as Plasmodium falciparum, is poorly characterized, despite being the second most abundant isotype in blood after IgG. Here, we investigated the circulating IgA response in humans to P. falciparum sporozoites that are injected into the skin by mosquitoes and migrate to the liver via the bloodstream to initiate malaria infection. We found that circulating IgA was induced in three independent sporozoite-exposed cohorts: individuals living in an endemic region in Mali, malaria-naïve individuals immunized intravenously with three large doses of irradiated sporozoites, and malaria-naïve individuals exposed to a single controlled mosquito bite infection. Mechanistically, we found evidence in an animal model that IgA responses were induced by sporozoites at dermal inoculation sites. From malaria-resistant individuals, we isolated several IgA monoclonal antibodies that reduced liver parasite burden in mice. One antibody, MAD2-6, bound to a conserved epitope in the amino terminus of the P. falciparum circumsporozoite protein, the dominant protein on the sporozoite surface. Crystal structures of this antibody revealed a unique mode of binding whereby two Fabs simultaneously bound either side of the target peptide. This study reveals a role for circulating IgA in malaria and identifies the amino terminus of the circumsporozoite protein as a target of functional antibodies.


Subject(s)
Antibodies, Protozoan , Immunoglobulin A , Malaria , Animals , Antibodies, Protozoan/immunology , Humans , Immunoglobulin A/immunology , Malaria/immunology , Mice , Plasmodium falciparum , Protozoan Proteins , Sporozoites
8.
PLoS Pathog ; 17(4): e1009430, 2021 04.
Article in English | MEDLINE | ID: mdl-33822828

ABSTRACT

In malaria-naïve children and adults, Plasmodium falciparum-infected red blood cells (Pf-iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf-iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of uninfected, asymptomatic Malian individuals before the malaria season revealed that monocytes of adults produced lower levels of inflammatory cytokines (IL-1ß, IL-6 and TNF) in response to Pf-iRBC stimulation compared to monocytes of Malian children and malaria-naïve U.S. adults. Moreover, monocytes of Malian children produced lower levels of IL-1ß and IL-6 following Pf-iRBC stimulation compared to 4-6-month-old infants. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf-iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. Trial Registration: ClinicalTrials.gov NCT01322581.


Subject(s)
Malaria, Falciparum/immunology , Malaria/immunology , Monocytes/metabolism , Phenotype , Adult , Child , Child, Preschool , Cytokines/metabolism , Erythrocytes/metabolism , Humans , Infant , Inflammation/immunology , Inflammation/metabolism , Macrophages/metabolism , Malaria/blood , Malaria, Falciparum/blood , Monocytes/immunology , Plasmodium falciparum/immunology , Plasmodium falciparum/metabolism
9.
Clin Transl Immunology ; 10(3): e1265, 2021.
Article in English | MEDLINE | ID: mdl-33763229

ABSTRACT

OBJECTIVES: Study of individuals with protection from Plasmodium falciparum (Pf) infection and clinical malaria, including individuals affected by the sickle-cell trait (HbAS), offers the potential to identify cellular targets that could be translated for therapeutic development. We previously reported the first involvement of cellular immunity in HbAS-associated relative protection and identified a novel subset of memory-activated NK cells that was enriched in HbAS children and associated with parasite control. We hypothesised that other memory cell subsets might distinguish the baseline profile of HbAS children and children with normal haemoglobin (HbAA). METHODS: Subsets of memory T cells and NK cells were analysed by flow cytometry in paired samples collected from HbAS and HbAA children, at baseline and during the first malaria episode of the ensuing transmission season. Correlations between cell frequencies and features of HbAS-mediated protection from malaria were determined. RESULTS: HbAS children displayed significantly higher frequency of memory CD8+ T cells at baseline than HbAA children. Baseline frequency of memory CD8+ T cells correlated with features of HbAS-mediated protection from malaria. Exploration of memory CD8+ T cell subsets revealed that central memory CD8+ T cell frequency was higher in HbAS children than in HbAA children. CONCLUSION: This study shows that HbAS children develop a larger memory CD8+ T cell compartment than HbAA children, and associates this compartment with better control of subsequent onset of infection and parasite density. Our data suggest that central memory CD8+ T cells may play an important role in the relative protection against malaria experienced by HbAS individuals, and further work to investigate this is warranted.

10.
Malar J ; 20(1): 9, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407502

ABSTRACT

BACKGROUND: Plasmodium falciparum causes the majority of malaria cases worldwide and children in sub-Saharan Africa are the most vulnerable group affected. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, the aim of this study was to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function. METHODS: In this cross-sectional study, the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n = 27) or asymptomatically infected with P. falciparum (n = 8) was assessed. Additionally, plasma cytokine and chemokine levels were measured in these adults and in Malian children (n = 19) with acute symptomatic malaria. RESULTS: With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria. CONCLUSIONS: The findings of this study indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to the understanding of asymptomatic P. falciparum infections in malaria-endemic areas.


Subject(s)
Cytokines/blood , Dendritic Cells/parasitology , Malaria, Falciparum/blood , Adult , Asymptomatic Infections , Chemokines/blood , Child , Child, Preschool , Cross-Sectional Studies , Erythrocytes/parasitology , Female , Humans , Malaria/blood , Male , Mali , Middle Aged , Phenotype , Plasmodium falciparum/physiology
11.
Nat Med ; 26(12): 1929-1940, 2020 12.
Article in English | MEDLINE | ID: mdl-33106664

ABSTRACT

The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence.


Subject(s)
Asymptomatic Infections/epidemiology , Host-Parasite Interactions/genetics , Malaria, Falciparum/epidemiology , Plasmodium falciparum/pathogenicity , Adolescent , Adult , Animals , Child , Child, Preschool , Endemic Diseases/prevention & control , Erythrocytes/parasitology , Female , Genotype , Humans , Infant , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Male , Mali/epidemiology , Middle Aged , Plasmodium falciparum/genetics , Seasons , Young Adult
12.
bioRxiv ; 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33106806

ABSTRACT

In malaria-naïve children and adults, Plasmodium falciparum -infected red blood cells ( Pf -iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf -iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of monocytes collected from uninfected, asymptomatic Malian individuals before the malaria season revealed an inverse relationship between age and Pf -iRBC-inducible inflammatory cytokine (IL-1ß, IL-6 and TNF) production, whereas Malian infants and malaria-naïve U.S. adults produced similarly high levels of inflammatory cytokines. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf -iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. These findings also suggest that past malaria exposure could mitigate monocyte-associated immunopathology induced by other pathogens such as SARS-CoV-2. AUTHOR SUMMARY: The malaria parasite is mosquito-transmitted and causes fever and other inflammatory symptoms while circulating in the bloodstream. However, in regions of high malaria transmission the parasite is less likely to cause fever as children age and enter adulthood, even though adults commonly have malaria parasites in their blood. Monocytes are cells of the innate immune system that secrete molecules that cause fever and inflammation when encountering microorganisms like malaria. Although inflammation is critical to initiating normal immune responses, too much inflammation can harm infected individuals. In Mali, we conducted a study of a malaria-exposed population from infants to adults and found that participants' monocytes produced less inflammation as age increases, whereas monocytes of Malian infants and U.S. adults, who had never been exposed to malaria, both produced high levels of inflammatory molecules. Accordingly, monocytes exposed to malaria in the laboratory became less inflammatory when re-exposed to malaria again later, and these monocytes 'turned down' their inflammatory genes. This study helps us understand how people become immune to inflammatory symptoms of malaria and may also help explain why people in malaria-endemic areas appear to be less susceptible to the harmful effects of inflammation caused by other pathogens such as SARS-CoV-2.

13.
Mali Med ; 33(1): 10-15, 2018.
Article in French | MEDLINE | ID: mdl-30484584

ABSTRACT

Soil transmitted helminthiasis and schistosomiasis are neglected tropical diseases (NTD), affecting the health status of endemic Malian populations. Mali has a national NTD elimination program using the mass drug administration (MDA) strategy combining Albendazole, Ivermectinand Praziquantel. Malaria still remains a public health problem in Mali. The Community health Center (CSCOM) in Kalifabougouvillage in the Kati health district has benefited from such MDA program since 2010. AIM: To evaluate the prevalence rate of malaria, intestinal and urinary parasite infections in the local population. MATERIEL AND METHODS: We conducted a nested cross sectional and cohort study in May 2011 on volunteers aged three months old to 25 years old. Blood smear (blood), Kato-Katz (Stools) and urine filtration techniques were used to evaluate parasite prevalence. Informed consent and assentment were obtained from the volunteers before their inclusion. All volunteers received treatment against the parasite diseases of interest according to the guidelines of national disease control programs. RESULTS: A total of 688 volunteers were included. The prevalence rates of parasitic infections were 22.1% [95% CI= 22.06 - 22.12] for Plasmodium falciparum, 9% [95% CI: 8.9-9.034] for Schistosoma haematobium; 3.5% [95% CI: 3.48-3.513] for Hymenolepis nana and 0.1% [95% CI : 0.093-0.107] for Schistoso mamansoni. The prevalence rate of the co-infection Plasmodium falciparum - Schistosoma haematobium was 2.18% [95% CI= 2.17 - 2.19] in Kalifabougou. CONCLUSION: Praziquantel and Albendazole-based MDA and Artemisinin based combined therapy (ACTs) could explain theobserved low prevalence of helminthiasis and malaria in Kalifabougou, Mali.


Les géohelminthes et les schistosomoses sont des maladies tropicales négligées, impactant sur l'état de santé des populations maliennes endémiques. Le Mali dispose d'un programme national d'élimination qui utilise la stratégie du Traitement de Masse à base Communautaire (TMC) combinant l'Albendazole, Ivermectine et le Praziquantel (PZQ). Quant au paludisme, il reste un problème majeur de santé publique au Mali. L'aire de santé du Centre de Santé Communautaire (CSCOM) de Kalifabougou, dans le district sanitaire de Kati, bénéficie de tel programme TMC depuis 2010. OBJECTIF: Evaluer les taux de prévalences du paludisme infestation, des parasitoses intestinales et urinaires dans la population du village de Kalifabougou, Mali. MATERIELS ET MÉTHODES: Nous avons réalisé une étude transversale en mai 2011 nichée dans une cohorte de volontaires âgés de 3 mois à 25 ans. Les techniques de la goutte épaisse (sang), de Kato-Katz, (selles), et de la filtration des urines; ont été utilisées pour l'évaluation des prévalences parasitaires. Le consentement éclairé et libre ainsi l'assentiment ont été obtenus de tous les volontaires avant leur inclusion. Tous les volontaires ont reçu des traitements contre les parasitoses selon les recommandations des programmes nationaux de lutte contre ces maladies. RÉSULTATS: Un total de 688 volontaires a été inclus dans notre étude. Les taux de prévalences des infections parasitaires étaient de 22,1%[95% CI: 22,06­22,12] pour le Plasmodium falciparum, 9%[95% CI: 8,9­9,034] pour Schistosomahaematobium, 3,5%[95% CI:3,48­3,513] pour Hymenolepis nana et 0,1%[95% CI : 0,093­0,107] pour Schistosomamansoni. Le taux de prévalence de la co-infection Plasmodium falciparum - Schistosomahaematobium était de 2,18%[95% CI :2,17­2,19] a Kalifabougou. CONCLUSION: Le traitement de masse à base de Praziquantel (PZQ) et d'Albendazole et le traitement systématique des cas de fièvres par les combinaisons thérapeutiques à base d'artemisinine (CTAs), auraient pu contribuer à la baisse de la prévalence des helminthes et du paludisme à Kalifabougou, Mali.


Subject(s)
Intestinal Diseases, Parasitic/epidemiology , Urinary Tract Infections/epidemiology , Urinary Tract Infections/parasitology , Adolescent , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Female , Humans , Infant , Male , Mali/epidemiology , Prevalence
14.
Am J Trop Med Hyg ; 99(1): 43-50, 2018 07.
Article in English | MEDLINE | ID: mdl-29848401

ABSTRACT

Reticulocyte-binding homologues (RH) are a ligand family that mediates merozoite invasion of erythrocytes in Plasmodium falciparum. Among the five members of this family identified so far, only P. falciparum reticulocyte-binding homologue-5 (PfRH5) has been found to be essential for parasite survival across strains that differ in virulence and route of host-cell invasion. Based on its essential role in invasion and early evidence of sequence conservation, PfRH5 has been prioritized for development as a vaccine candidate. However, little is known about the extent of genetic variability of RH5 in the field and the potential impact of such diversity on clinical outcomes or on vaccine evasion. Samples collected during a prospective cohort study of malaria incidence conducted in Kalifabougou, in southwestern Mali, were used to estimate genetic diversity, measure haplotype prevalence, and assess the within-host dynamics of PfRH5 variants over time and in relation to clinical malaria. A total of 10 nonsynonymous polymorphic sites were identified in the Pfrh5 gene, resulting in 13 haplotypes encoding unique protein variants. Four of these variants have not been previously observed. Plasmodium falciparum reticulocyte-binding homologue-5 had low amino acid haplotype (h = 0.58) and nucleotide (π = 0.00061) diversity. By contrast to other leading blood-stage malaria vaccine candidate antigens, amino acid differences were not associated with changes in the risk of febrile malaria in consecutive infections. Conserved B- and T-cell epitopes were identified. These results support the prioritization of PfRH5 for possible inclusion in a broadly cross-protective vaccine.


Subject(s)
Carrier Proteins/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Haplotypes , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Polymorphism, Genetic , Adolescent , Adult , Amino Acid Sequence , B-Lymphocytes/immunology , B-Lymphocytes/parasitology , Carrier Proteins/immunology , Child , Child, Preschool , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/genetics , Erythrocytes/parasitology , Female , Gene Expression , Humans , Infant , Malaria Vaccines/biosynthesis , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Male , Mali/epidemiology , Peptides/chemistry , Peptides/genetics , Peptides/immunology , Plasmodium falciparum/immunology , Prospective Studies , T-Lymphocytes/immunology , T-Lymphocytes/parasitology
15.
Proc Natl Acad Sci U S A ; 114(49): E10568-E10577, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29162686

ABSTRACT

Dendritic cells (DCs) are activated by pathogens to initiate and shape immune responses. We found that the activation of DCs by Plasmodium falciparum, the main causative agent of human malaria, induces a highly unusual phenotype by which DCs up-regulate costimulatory molecules and secretion of chemokines, but not of cytokines typical of inflammatory responses (IL-1ß, IL-6, IL-10, TNF). Similar results were obtained with DCs obtained from malaria-naïve US donors and malaria-experienced donors from Mali. Contact-dependent cross-talk between the main DC subsets, plasmacytoid and myeloid DCs (mDCs) was necessary for increased chemokine and IFN-α secretion in response to the parasite. Despite the absence of inflammatory cytokine secretion, mDCs incubated with P. falciparum-infected erythrocytes activated antigen-specific naïve CD4+ T cells to proliferate and secrete Th1-like cytokines. This unexpected response of human mDCs to P. falciparum exhibited a transcriptional program distinct from a classical LPS response, pointing to unique P. falciparum-induced activation pathways that may explain the uncharacteristic immune response to malaria.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Erythrocytes/parasitology , Host-Parasite Interactions , Lymphocyte Activation , Plasmodium falciparum/metabolism , Antigens, CD/genetics , Antigens, CD/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Chemokine CCL5/genetics , Chemokine CCL5/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Chemokine CXCL9/genetics , Chemokine CXCL9/immunology , Coculture Techniques , Dendritic Cells/drug effects , Dendritic Cells/parasitology , Gene Expression Regulation , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Lipopolysaccharides/pharmacology , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Mali , Plasmodium falciparum/growth & development , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
16.
Clin Infect Dis ; 64(5): 645-653, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28362910

ABSTRACT

Background: Chronic asymptomatic Plasmodium falciparum infections are common in endemic areas and are thought to contribute to the maintenance of malaria immunity. Whether treatment of these infections increases the subsequent risk of clinical episodes of malaria is unclear. Methods: In a 3-year study in Mali, asymptomatic individuals with or without P. falciparum infection at the end of the 6-month dry season were identified by polymerase chain reaction (PCR), and clinical malaria risk was compared during the ensuing 6-month malaria transmission season. At the end of the second dry season, 3 groups of asymptomatic children were identified: (1) children infected with P. falciparum as detected by rapid diagnostic testing (RDT) who were treated with antimalarials (n = 104), (2) RDT-negative children whose untreated P. falciparum infections were detected retrospectively by PCR (n = 55), and (3) uninfected children (RDT/PCR negative) (n = 434). Clinical malaria risk during 2 subsequent malaria seasons was compared. Plasmodium falciparum-specific antibody kinetics during the dry season were compared in children who did or did not harbor asymptomatic P. falciparum infections. Results: Chronic asymptomatic P. falciparum infection predicted decreased clinical malaria risk during the subsequent malaria season(s); treatment of these infections did not alter this reduced risk. Plasmodium falciparum-specific antibodies declined similarly in children who did or did not harbor chronic asymptomatic P. falciparum infection during the dry season. Conclusions: These findings challenge the notion that chronic asymptomatic P. falciparum infection maintains malaria immunity and suggest that mass drug administration during the dry season should not increase the subsequent risk of clinical malaria.


Subject(s)
Malaria, Falciparum/epidemiology , Plasmodium falciparum , Adolescent , Adult , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Asymptomatic Infections , Child , Child, Preschool , Chronic Disease , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Mali/epidemiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Population Surveillance , Risk , Seasons , Young Adult
17.
Open Forum Infect Dis ; 2(3): ofv118, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26361633

ABSTRACT

Background. People of the Fulani ethnic group are more resistant to malaria compared with genetically distinct ethnic groups, such as the Dogon people, in West Africa, and studies suggest that this resistance is mediated by enhanced antibody responses to Plasmodium falciparum antigens. However, prior studies measured antibody responses to <0.1% of P falciparum proteins, so whether the Fulani mount an enhanced and broadly reactive immunoglobulin (Ig)M and IgG response to P falciparum remains unknown. In general, little is known about the extent to which host genetics influence the overall antigen specificity of IgM and IgG responses to natural infections. Methods. In a cross-sectional study in Mali, we collected plasma from asymptomatic, age-matched Fulani (n = 24) and Dogon (n = 22) adults with or without concurrent P falciparum infection. We probed plasma against a protein microarray containing 1087 P falciparum antigens and compared IgM and IgG profiles by ethnicity. Results. We found that the breadth and magnitude of P falciparum-specific IgM and IgG responses were significantly higher in the malaria-resistant Fulani versus the malaria-susceptible Dogon, and, unexpectedly, P falciparum-specific IgM responses more strongly distinguished the 2 ethnic groups. Conclusions. These findings point to an underappreciated role for IgM in protection from malaria, and they suggest that host genetics may influence the antigen specificity of IgM and IgG responses to infection.

18.
PLoS Negl Trop Dis ; 8(9): e3154, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25210876

ABSTRACT

BACKGROUND: Malaria and schistosomiasis often overlap in tropical and subtropical countries and impose tremendous disease burdens; however, the extent to which schistosomiasis modifies the risk of febrile malaria remains unclear. METHODS: We evaluated the effect of baseline S. haematobium mono-infection, baseline P. falciparum mono-infection, and co-infection with both parasites on the risk of febrile malaria in a prospective cohort study of 616 children and adults living in Kalifabougou, Mali. Individuals with S. haematobium were treated with praziquantel within 6 weeks of enrollment. Malaria episodes were detected by weekly physical examination and self-referral for 7 months. The primary outcome was time to first or only malaria episode defined as fever (≥ 37.5 °C) and parasitemia (≥ 2500 asexual parasites/µl). Secondary definitions of malaria using different parasite densities were also explored. RESULTS: After adjusting for age, anemia status, sickle cell trait, distance from home to river, residence within a cluster of high S. haematobium transmission, and housing type, baseline P. falciparum mono-infection (n = 254) and co-infection (n = 39) were significantly associated with protection from febrile malaria by Cox regression (hazard ratios 0.71 and 0.44; P = 0.01 and 0.02; reference group: uninfected at baseline). Baseline S. haematobium mono-infection (n = 23) did not associate with malaria protection in the adjusted analysis, but this may be due to lack of statistical power. Anemia significantly interacted with co-infection (P = 0.009), and the malaria-protective effect of co-infection was strongest in non-anemic individuals. Co-infection was an independent negative predictor of lower parasite density at the first febrile malaria episode. CONCLUSIONS: Co-infection with S. haematobium and P. falciparum is significantly associated with reduced risk of febrile malaria in long-term asymptomatic carriers of P. falciparum. Future studies are needed to determine whether co-infection induces immunomodulatory mechanisms that protect against febrile malaria or whether genetic, behavioral, or environmental factors not accounted for here explain these findings.


Subject(s)
Coinfection/parasitology , Malaria, Falciparum/parasitology , Plasmodium falciparum/isolation & purification , Schistosoma haematobium/isolation & purification , Schistosomiasis haematobia/parasitology , Adolescent , Adult , Animals , Child , Child, Preschool , Coinfection/epidemiology , Female , Humans , Infant , Malaria, Falciparum/epidemiology , Male , Mali/epidemiology , Prospective Studies , Schistosomiasis haematobia/epidemiology , Young Adult
19.
PLoS Pathog ; 10(4): e1004079, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24743880

ABSTRACT

In malaria-naïve individuals, Plasmodium falciparum infection results in high levels of parasite-infected red blood cells (iRBCs) that trigger systemic inflammation and fever. Conversely, individuals in endemic areas who are repeatedly infected are often asymptomatic and have low levels of iRBCs, even young children. We hypothesized that febrile malaria alters the immune system such that P. falciparum re-exposure results in reduced production of pro-inflammatory cytokines/chemokines and enhanced anti-parasite effector responses compared to responses induced before malaria. To test this hypothesis we used a systems biology approach to analyze PBMCs sampled from healthy children before the six-month malaria season and the same children seven days after treatment of their first febrile malaria episode of the ensuing season. PBMCs were stimulated with iRBC in vitro and various immune parameters were measured. Before the malaria season, children's immune cells responded to iRBCs by producing pro-inflammatory mediators such as IL-1ß, IL-6 and IL-8. Following malaria there was a marked shift in the response to iRBCs with the same children's immune cells producing lower levels of pro-inflammatory cytokines and higher levels of anti-inflammatory cytokines (IL-10, TGF-ß). In addition, molecules involved in phagocytosis and activation of adaptive immunity were upregulated after malaria as compared to before. This shift was accompanied by an increase in P. falciparum-specific CD4+Foxp3- T cells that co-produce IL-10, IFN-γ and TNF; however, after the subsequent six-month dry season, a period of markedly reduced malaria transmission, P. falciparum-inducible IL-10 production remained partially upregulated only in children with persistent asymptomatic infections. These findings suggest that in the face of P. falciparum re-exposure, children acquire exposure-dependent P. falciparum-specific immunoregulatory responses that dampen pathogenic inflammation while enhancing anti-parasite effector mechanisms. These data provide mechanistic insight into the observation that P. falciparum-infected children in endemic areas are often afebrile and tend to control parasite replication.


Subject(s)
Adaptive Immunity , CD4-Positive T-Lymphocytes/immunology , Cytokines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adolescent , CD4-Positive T-Lymphocytes/metabolism , Child , Child, Preschool , Cytokines/blood , Female , Humans , Inflammation/blood , Inflammation/immunology , Inflammation/parasitology , Malaria, Falciparum/blood , Malaria, Falciparum/epidemiology , Male , Plasmodium falciparum/metabolism
20.
J Infect Dis ; 209(5): 789-98, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24133188

ABSTRACT

BACKGROUND: Plasmodium falciparum reticulocyte-binding protein homologue 5 (PfRH5) is a blood-stage parasite protein essential for host erythrocyte invasion. PfRH5-specific antibodies raised in animals inhibit parasite growth in vitro, but the relevance of naturally acquired PfRH5-specific antibodies in humans is unclear. METHODS: We assessed pre-malaria season PfRH5-specific immunoglobulin G (IgG) levels in 357 Malian children and adults who were uninfected with Plasmodium. Subsequent P. falciparum infections were detected by polymerase chain reaction every 2 weeks and malaria episodes by weekly physical examination and self-referral for 7 months. The primary outcome was time between the first P. falciparum infection and the first febrile malaria episode. PfRH5-specific IgG was assayed for parasite growth-inhibitory activity. RESULTS: The presence of PfRH5-specific IgG at enrollment was associated with a longer time between the first blood-stage infection and the first malaria episode (PfRH5-seropositive median: 71 days, PfRH5-seronegative median: 18 days; P = .001). This association remained significant after adjustment for age and other factors associated with malaria risk/exposure (hazard ratio, .62; P = .02). Concentrated PfRH5-specific IgG purified from Malians inhibited P. falciparum growth in vitro. CONCLUSIONS: Naturally acquired PfRH5-specific IgG inhibits parasite growth in vitro and predicts protection from malaria. These findings strongly support efforts to develop PfRH5 as an urgently needed blood-stage malaria vaccine. CLINICAL TRIALS REGISTRATION: NCT01322581.


Subject(s)
Antibodies, Protozoan/immunology , Carrier Proteins/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Immunoglobulin G/immunology , Infant , Malaria Vaccines/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Placenta/immunology , Placenta/parasitology , Pregnancy , Reticulocytes/immunology , Reticulocytes/parasitology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...